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Abstract—Three-component condensation of 5-(2-furyl)-1,3-cyclohexanedione with 2-naphthylamine and
aromatic or heteroaromatic aldehydes afforded 12-aryl(hetaryl)-9-(2-furyl)-7,8,9,10,11,12-hexahydrobenzo[a]-
acridin-11-ones possessing two asymmetric carbon atoms (C” and C'?). The products were found to be formed

as mixtures of diastereoisomers.
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Reactions of 2-naphthylamine with carbonyl com-
pounds are widely used in the synthesis of benzo[f]-
quinoline derivatives. Among these, Doebner, Doeb-
ner—Miller, Conrad—Limpach, and Knorr syntheses
are well known [1]. We previously showed [2] that
2-naphthylamine reacts with aromatic aldehydes and
cyclohexanone in the presence of acid catalyst to give
tetrahydrobenzo[a]phenanthridine derivatives (i.e.,
compounds containing fused benzoquinoline and cyclo-
hexane fragments). Reactions of 2-naphthylamine with
aromatic aldehydes and 3- or 4-methylcyclohexanone
lead to formation of two types of products, methyl-
substituted tetrahydrobenzo[a]phenanthridines and
tetrahydrobenzo[a]acridines [3]. Both these include
a benzo[f]quinoline fragment and attract interest as
structural analogs of alkaloids [4, 5], enzyme inhibitors
[6], bactericides [7], and antibiotics [8]. Blache et al.
[4] reported that modified acridine derivatives, in
particular tetrahydroacridines having a carbonyl group
(floxacrine analogs), exhibit a stronger antibacterial
activity than the corresponding compounds having no
carbonyl group.

The present work was aimed at synthesizing new
partially hydrogenated oxo derivatives of acridine con-
taining a benzo[f]quinoline fragment. For this purpose,
we examined three-component condensation of
2-naphthylamine (I) with 5-(2-furyl)-1,3-cyclohexane-
dione (ITI) and aromatic or heteroaromatic aldehydes
ITa—IIIp. The use of cyclic B-diketone in this reaction
allowed us to introduce a carbonyl group into a fused
heteroring simultaneously with building of azaphenan-

112

threne skeleton. Moreover, insofar as 5-(2-furyl)-1,3-
cyclohexanedione is an unsymmetrical ketone, the
resulting molecule will contain both pharmacophoric
furan ring and an asymmetric center which is an im-
portant attribute of biologically active compounds
whose effect strongly depends on the steric structure.

As aldehyde components in the condensation with
amine I and diketone II we used substituted benzalde-
hydes IIIa—IIIm, 3- and 4-pyridinecarbaldehydes IIIn
and IIlo, and 2-furaldehyde IIIp. The reactions were
carried out by heating equimolar amounts of the reac-
tants in boiling ethanol. Due to high reactivity of
B-diketone II, its condensation with amine I and
aldehydes III in alcoholic medium required no acid
catalyst; presumably, the enol form of II played the
role of such a catalyst. As a result, the corresponding
12-aryl(hetaryl)-9-(2-furyl)-7,8,9,10,11,12-hexahydro-
benzo[a]acridin-11-ones IVa—IVp were obtained in
27-79% yield.

The formation of benzo[a]acridine systems may be
accomplished along three pathways since each reactant
in a three-component system is capable of reacting first
with any of the two other components. Therefore, the
first reaction stage could produce three intermediates:
N-aryl(hetaryl)methylidene-2-naphthylamine (V),
2-aryl(heteryl)methylidene-5-(2-furyl)-1,3-cyclo-
hexanedione A, and 5-(2-furyl)-3-(2-naphthylamino)-
2-cyclohexenone B (Scheme 1). The next stage is
reaction of intermediate V, A, or B with the third com-
ponent, and it can include a sequence of transforma-
tions. For instance, Schiff base V takes up diketone II
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Scheme 1.
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4-pyridyl (o), 2-furyl (p).

molecule to give 2-[aryl(2-naphthylamino)methyli-
dene]-5-(2-furyl)-1,3-cyclohexanedione C which
undergoes hydramine fission into 2-naphthylamine (I)
and 2-arylmethylidene-1,3-cyclohexanedione A. The
latter adds to 2-naphthylamine (I) at the carbon atom
possessing the largest electron density (in the a-posi-
tion with respect to the amino group) with formation of
enamino hydroxy ketone D whose dehydration is
accompanied by ring closure to give benzo[a]acridi-
none system IV. It should be noted that the formation
of enamino hydroxy ketone D may be regarded as

resulting from rearrangement of intermediate C via
migration of the arylmethylidenecyclohexandione frag-
ment to the naphthalene a-carbon atom, as in the trans-
formation of alkyl-, dialkyl-, and trialkyl(phenyl)am-
monium halides known as the Hofmann—Martius
rearrangement [9].

Cyclohexanedione A is capable of reacting with the
third component, naphthylamine I, by adding at the
amino group or a-carbon atom in the naphthalene ring,
yielding amino diketone C or enamino hydroxy ketone
D. The above noted transformation of intermediate C
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into D, followed by cyclocondensation to benzo[a]-
acridinone IV, makes the addition of A at the a-carbon
atom preferred to the addition at the amino group.

Cyclohexenone B takes up aldehyde III at the
endocyclic double bond, leading to intermediate E.
The latter may be regarded as a substituted benzyl
alcohol which is capable of undergoing condensation
with aromatic compounds, as in acid-catalyzed reac-
tions of arenes with aldehydes [10]. The condensation
involves electron-rich a-carbon atom of the naphtha-
lene fragment to give final benzo[a]acridinone IV.

Of the three possible primary intermediates (V, A,
and B), we succeeded in isolating only Schiff bases V.
Insofar as isolated Schiff bases V smoothly reacted
with furylcyclohexanediones II to produce benzo[al-
acridinones IV, the pathway involving initial reaction
of amine I with aldehydes ITla—IlIIk, despite its ap-
parent complexity, seems to be the most probable. On
the other hand, the two other pathways cannot be ruled
out, for the rate of subsequent transformations of inter-
mediate cyclohexanedione A and cyclohexenone B
may be much higher than the rate of their formation.

The yield of target products IV depends on the sub-
stituent R in initial aldehydes III. The reactions with
benzaldehydes IIf-IIli and IIIk—IIIm having elec-
tron-donor alkoxy or alkylamino groups in the benzene
ring, as well with 3-pyridinecarbaldehyde (IIIn), are
characterized by high yields of the corresponding ben-
zoacridinones IV. The yields of compounds IIla and
IIp from o-fluorobenzaldehyde and 2-furaldehyde,
respectively, are lower, presumably due to negative
inductive effect of the fluorine and oxygen atoms; in
addition, the condensations with IIla and IIIp were
accompanied by formation of unidentified by-products.

It should be noted that reactions of some amines V
with cyclohexanedione II have already been reported
[11]. However, on the basis of only IR spectral data,
the products were assigned the structure of 5-aryl-2-
furyl-1,2,3,4-tetrahydrobenzo[ a]phenanthridin-4-ones
F which are isomeric to benzoacridinones IV. Struc-
ture F could be formed as a result of intramolecular
ring closure in intermediate amino ketones C. Using
IR and '"H NMR spectroscopy and mass spectrometry
in combination with published data [3, 12] obtained
with the aid of two-dimensional NMR techniques
(COSY, NOESY, HSQC, and HMBC), we found that,
like the products of three-component condensation of
amine I with aromatic (heteroaromatic) aldehydes and
furylcyclohexanedione II, the compounds described in
[11] have the structure of 12-R-9-(2-furyl)-7,8.9,10,-

11,12-hexahydrobenzo[a]acrydin-11-ones 1V, regard-
less of the substituent R.

The IR spectra of IVa—IVp contained strong
absorption bands at 1590 and 1525 cm™' which should
be assigned to the enaminocarbonyl fragment (1580,
1520 ecm™) [13]. Strong bands at 3320-3270 and
1640—1630 cm™' belong, respectively, to stretching and
bending vibrations of the secondary amino group.
Stretching vibrations of the alkyl and cycloalkyl C-H
bonds appear at 2955-2875 cm™', and those of aromat-
ic and heteroaromatic C—H bonds, at 3070-3030 cm ™.
Vibrations of the furan C—O—-C fragment give rise to
a strong absorption band at 12551230 cm ™. Alkoxy-
substituted compounds IVf-IVk show in the spectra
an additional C—O—C band in the same region. The
ester carbonyl group in benzoacridinone IVj is charac-
terized by absorption at 1720 cm ™.

The mass spectra of IVa—IVp contained the molec-
ular ion peaks with a relative intensity of 13 to 34%.
The most abundant ion (100%) is [M — R]" (m/z 314).
Also, [M — R + H]" ion peak was present (m/z 315,
Ie; 15-18%). Compound IVI showed in the spectrum
a peak from the [R + H]" ion with m/z 121 (I,q 32%),
indicating relative stability of N,N-dimethylaniline ion
to electron impact. In the mass spectra of all acridi-
nones IV we observed an ion peak with m/z 192
(111 8-25%), resulting from elimination of the
C4H;0CHCH,CO fragment from the [M —R]" ion, and
ion peak with m/z 191 [192 — H]" (I, 7-20%).

The "H NMR spectra of IVa—IVp were similar to
those described previously for structurally related
benzoacridinones [3]. Signals from the furan ring
protons appeared as doublets at & 5.75-6.39 and 7.94—
8.08 ppm. Analysis of the aliphatic region of the spec-
trum showed that the isolated products are mixtures of
two stereoisomers with pseudoequatorial and pseudo-
axial orientation of the furyl substituent on C’ at a ratio
of 2:1. The 9-H proton gives two multiplets at 6 3.27—
3.57 ppm. On the basis of their positions and half-
widths, the upfield multiplet was assigned to the axial
9-H proton, and the downfield, to equatorial. The half-
width of the 9-H,, signal is larger than that of 9-H,,,
for coupling constant ax—ax’ (~9 Hz) is much greater
than ax—eq' or eq—eq' (~6 Hz).

We also observed separate signals from the NH and
12-H protons (singlets) in each stereoisomer. Their
intensity ratio was consistent with the intensity ratio of
9-H. In the isomer with axial furyl substituent on C’,
the NH and 12-H protons suffer from shielding effect
of the furan ring, and their signals are located in
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a stronger field, as compared to the isomer with
equatorial 9-(2-furyl) group. Correspondingly, the 4'-H
proton in the furan ring gives two signals belonging to
different diastereoisomers. We succeeded in separating
some compounds IV into particular isomers by frac-
tional crystallization from DMF (IVb, IVe, IVh, 1Vi)
or ethanol-benzene (1:3) (IVd).

EXPERIMENTAL

The IR spectra were recorded in KBr on a Nicolet
Protege-460 Fourier spectrometer. The NMR spectra
were measured on Bruker AC-500 (500 MHz) and
Tesla BS-567 (100 MHz) instruments from solutions in
DMSO-ds using tetramethylsilane as internal refer-
ence. The mass spectra (electron impact, 70 eV) were
run on a Finnigan MAT Incos-50 mass spectrometer
and on a Hewlett—Packard HP 5890/5972 GC-MS
system (HP-5MS column, 30 mx0.25 mmx0.25 um,
5% of phenylmethylsilicone; injector temperature
250°C). The melting points were determined on
a Kofler apparatus.

5-(2-Furyl)-1,3-cyclohexanedione (II) was synthe-
sized from diethyl malonate and furfurylideneacetone
with intermediate isolation of 6-(2-furyl)-2,4-dioxo-
cyclohexanecarboxylic acid [11], mp 150-151°C.
N-Aryl(hetaryl)methylidene-2-naphthylamines Va—Vb
were prepared as described in [2].

12-Aryl(hetaryl)-9-(2-furyl)-7,8,9,10,11,12-hexa-
hydrobenzo[a]acridin-11-ones IVa-IVp (general
procedure). a. A solution of 5 mmol of 2-naphthyl-
amine (I), 5 mmol of 5-(2-furyl)-1,3-cyclohexanedione
(I, and 5 mmol of aldehyde IIIa—IIIp in 20 ml of
ethanol was heated for 3—4 h under reflux. The precip-
itate was filtered off and washed with diethyl ether.

b. A solution of 5 mmol of diketone IT and 5 mmol
of Schiff base IIIa—IIIp in 20 ml of 1-butanol was
heated for 2.5-3 h under reflux. The products were
isolated as described above in a. Yield 32-78%.

12-(2-Fluorophenyl)-9-(2-furyl)-7,8,9,10,11,12-
hexahydrobenzo|a]acridin-11-one (IVa). Yield 29%,
mp 311-312°C. '"H NMR spectrum, &, ppm (J, Hz):
2.50 m (2H, 8-H); 2.92 m (2H, 10-H); 3.36 m and
3.54 m (1H, 9-H); 5.90 d.d and 6.39 d.d (1H, 4'-H,>J =
33, %7 =1.4); 595 s and 6.01 s (1H, 12-H); 6.22 d
(1H, 3'-H, °J = 7.3); 6.87-7.15 m (4H, Hyrom); 7.30 m,
7.58 m, and 7.79 m (6H, 1-H-6-H); 8.01 d (1H, 5'-H,
’J=1.4); 9.81 s and 9.90 s (1H, NH). Found, %:
N 3.34. C27H20FN02. Calculated, %: N 3.42.
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12-(4-Fluorophenyl)-9-(2-furyl)-7,8,9,10,11,12-
hexahydrobenzo|a]acridin-11-one (IVb). Yield 48%.

Isomer 9-ax. mp 238-239°C. 'H NMR spectrum, &,
ppm (J, Hz): 2.53 m (2H, 8-H), 2.90 m (2H, 10-H),
3.42 m (1H, 9-H), 5.75 d.d (1H, 4-H, *J = 3.5, 'J =
1.5), 5.81 s (1H, 12-H), 6.12 d (1H, 3'-H, °J = 3.5),
6.80 t and 7.16 d (4H, Huom, *J = 8.8), 7.20-7.50 m
and 7.60—7.74 m (6H, 1-H-6-H), 7.90 d (1H, 5"-H, *J =
1.2), 9.70 s (1H, NH). Found, %: N 3.17. Co;H,0FNO.,.
Calculated, %: N 3.42.

Isomer 9-eq. mp 303-304°C. '"H NMR spectrum, 8,
ppm (J, Hz): 2.53 m (2H, 8-H), 2.90 m (2H, 10-H),
3.35 m (1H, 9-H), 6.32 d.d (1H, 4-H, *J = 3.5, *J =
1.5), 5.90 s (1H, 12-H), 6.12 d (1H, 3'-H, °J = 3.5),
6.80 t and 7.16 d (4H, Hyom, J = 8.8), 7.20-7.50 m
and 7.60-7.74 m (6H, 1-H-6-H), 7.90 d (1H, 5'-H, °J =
1.2), 9.78 s (1H, NH). Found, %: N 3.23. C,7H;0FNO:..
Calculated, %: N 3.42.

9-(2-Furyl)-12-(3-hydroxyphenyl)-7,8,9,10,11,12-
hexahydrobenzo|a]acridin-11-one (IVc). Yield 43%,
mp 317-318°C. 'H NMR spectrum, &, ppm (J, Hz):
2.58 m (2H, 8-H); 2.89 m (2H, 10-H); 3.46 m and
3.57 m (1H, 9-H); 5.71 s and 5.79 s (1H, 12-H);
5.90 d.d and 6.40 d.d (1H, 4-H, °J = 3.4, *J = 1.3);
6.20 d (1H, 3-H, °J=3.4); 6.41 m, 6.63 m, and 6.88 m
(4H, Hyom); 7.30-7.42 m and 7.60-7.80 m (6H, 1-H-
6-H); 7.92 d (1H, 5-H, °J = 1.4); 8.96 s and 9.04 s
(1H, OH); 9.72 s and 9.80 s (1H, NH). Found, %:
C 79.43; H 5.04; N 3.27. Cy7H;NOs. Calculated, %:
C79.61; HS5.16; N 3.44.

9-(2-Furyl)-12-(4-hydroxyphenyl)-7,8,9,10,11,12-
hexahydrobenzo|a]acridin-11-one (IVd). Yield 36%.

Isomer 9-ax. mp 272-273°C. "H NMR spectrum, §,
ppm (J, Hz): 2.60 m (2H, 8-H), 2.95 m (2H, 10-H),
3.46 m (1H, 9-H), 5.72 s (1H, 12-H), 5.90 d.d (1H,
4-H, °J = 3.6, *J = 1.5), 6.12 d (1H, 3'-H, °J = 3.6),
6.48 d and 7.00 d (4H, Hyom, >J = 7.8), 7.18-7.54 m
and 7.61-7.80 m (6H, 1-H-6-H), 7.90 d (1H, 5'-H, °J =
1.7), 9.00 br.s (1H, OH), 9.69 s (1H, NH). Found, %:
C 79.53; H4.91; N 3.29. C,;H,NOs. Calculated, %:
C79.61; HS5.16; N 3.44.

Isomer 9-eq. mp 301-302°C. 'H NMR spectrum, §,
ppm (J, Hz): 2.60 m (2H, 8-H), 2.95 m (2H, 10-H),
3.32 m (1H, 9-H), 5.78 s (1H, 12-H), 6.33 d.d (1H,
4-H, °J = 3.6, *J = 1.5), 6.12 d (1H, 3'-H, °J = 3.6),
6.48 d and 7.00 d (4H, Hyom, >J = 7.8), 7.18-7.54 m
and 7.61-7.80 m (6H, 1-H-6-H), 7.90 d (1H, 5'-H, °J =
1.7), 9.00 br.s (1H, OH), 9.78 s (1H, NH). Found, %:
C 7937, H 488, N 3.31. C27H2]NO3. Calculated, %:
C79.61; H5.16; N 3.44.
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12-(3,4-Dihydroxyphenyl)-9-(2-furyl)-7,8,-
9,10,11,12-hexahydrobenzo|a]acridin-11-one (IVe).
Yield 35%.

Isomer 9-ax. mp 275-276°C. "H NMR spectrum, §,
ppm (J, Hz): 2.50 m (2H, 8-H), 2.89 m (2H, 10-H),
3.50 m (1H, 9-H), 5.65 s (1H, 12-H), 5.90 d.d (1H,
4-H, °J=3.7,%=18), 6.12 d (1H, 3"-H, °J = 3.7),
6.44 m and 6.60 s (3H, Hyom), 7.14-7.42 m and 7.57—
7.78 m (6H, 1-H-6-H), 7.96 d (1H, 5'-H, °J = 1.6),
9.52 s (1H, NH). Found, %: C 76.48, H 4.72, N 3.11.
C,7H,1NO,. Calculated, %: C 76.60; H 4.96; N 3.31.

Isomer 9-eq. mp 301-302°C. 'H NMR spectrum, §,
ppm (J, Hz): 2.50 m (2H, 8-H), 2.89 m (2H, 10-H),
3.36 m (1H, 9-H), 5.70 s (1H, 12-H), 6.30 d.d (1H,
4-H, °J=3.7,%=138), 6.12 d (1H, 3"-H, °J = 3.7),
6.44 m and 6.60 s (3H, Hyom), 7.14-7.42 m and 7.57—
7.78 m (6H, 1-H—6-H), 7.96 d (IH, 5'-H, *J = 1.6),
9.63 s (1H, NH). Found, %: C 76.44; H 4.89; N 2.97.
C27H21NO4. Calculated, %: C 7660, H 496, N 3.31.

12-(3,4-Dimethoxyphenyl)-9-(2-furyl)-7,8,9,10,-
11,12-hexahydrobenzo[a]acridin-11-one (IVf). Yield
71%, mp 253-254°C. '"H NMR spectrum, &, ppm
(/, Hz): 2.53 m (2H, 8-H), 2.90 m (2H, 10-H), 3.36 m
and 3.50 m (1H, 9-H), 3.65 s (3H, OMe), 3.70 s (3H,
OMe), 5.71 s and 5.80 s (1H, 12-H), 5.87 d.d and
6.30 d.d (1H, 4-H,*J=3.5,%J=1.6), 6.12 d (1H, 3"-H,
3J=3.5),6.51 mand 6.91 d 3H, Hyom, -J = 7.9),
7.22-7.41 m and 7.64-7.73 m (6H, 1-H-6-H), 7.93 t
(1H, 5'-H, °J = 1.3), 9.40 s and 9.50 s (1H, NH).
Found, %: C 77.07; H 5.39; N 3.18. CyHsNO,. Cal-
culated, %: C 77.16; H 5.54; N 3.10.

9-(2-Furyl)-12-(3,4-methylenedioxyphenyl)-
7,8,9,10,11,12-hexahydrobenzo[a]acridin-11-one
(IVg). Yield 79%, mp 292-293°C. '"H NMR spectrum,
o, ppm (J, Hz): 2.50 m (2H, 8-H), 2.91 m (2H, 10-H),
3.38 m and 3.51 m (1H, 9-H), 5.80 m (3H, 12-H,
OCH,0), 5.89 d.d and 6.30 d.d (1H, 4-H,°J=3.3, *J=
1.5), 6.13 d (1H, 3'-H, °J = 3.3), 6.48-6.63 m (3H,
Harom), 7.23-7.41 m and 7.62-7.75 m (6H, 1-H-6-H),
791t (1H, 5-H, °J = 1.4),9.42 s and 9.51 s (1H, NH).
Found, %: C 77.09; H 4.76; N 3.05. CysH,;NO,. Cal-
culated, %: C 77.24; H 4.83; N 3.22.

9-(2-Furyl)-12-(4-hydroxy-3-methoxyphenyl)-
7,8,9,10,11,12-hexahydrobenzo[a]acridin-11-one
(IVh). Yield 56%.

Isomer 9-ax. mp 320-321°C. 'H NMR spectrum, §,
ppm (J, Hz): 2.52 m (2H, 8-H); 2.88 m (2H, 10-H);
3.47 m (1H, 9-H); 3.65 s (3H, OMe); 5.70 s (1H,
12-H); 5.85 d.d (1H, 4-H, °J =34, *J=1.5). 6.12d
(1H, 3'-H, °J = 3.4); 6.40 m, 6.82 s, and 6.90 s (3H,

Harom); 7.18-7.48 m and 7.58-7.78 m (6H, 1-H-6-H);
7.95d (1H, 5'-H, °J = 1.6); 9.50 s (1H, NH). Found, %:
C 76.66; H 5.13; N 3.10. CosH»3NO,. Calculated, %:
C 76.89; H 5.26; N 3.20.

Isomer 9-eq. mp 325-326°C. '"H NMR spectrum, §,
ppm (J, Hz): 2.52 m (2H, 8-H); 2.88 m (2H, 10-H);
3.38 m (1H, 9-H); 3.72 s (3H, OMe); 5.76 s (1H,
12-H); 6.30 d.d (1H, 4-H, *J=3.4,%7=15);6.12d
(1H, 3'-H, °J = 3.4); 6.40 m, 6.82 s, and 6.90 s (3H,
Harom); 7.18-7.48 m and 7.58-7.78 m (6H, 1-H—6-H);
7.95 d (1H, 5'-H, *J = 1.6); 9.60 s (1H, NH). Found, %:
C 76.73; H 5.19; N 3.23. C,3H23NO,. Calculated, %:
C 76.89; H 5.26; N 3.20.

12-(3-Ethoxy-4-hydroxyphenyl)-9-(2-furyl)-
7,8,9,10,11,12-hexahydrobenzo[a]acridin-11-one
(IVi). Yield 39%.

Isomer 9-ax. mp 280-281°C. '"H NMR spectrum, §,
ppm (J, Hz): 1.30 t and 3.98 q (5H, OEt); 2.50 m (2H,
8-H); 2.90 m (2H, 10-H); 3.41 m (1H, 9-H); 5.62 s
(1H, 12-H); 5.81 d.d (1H, 4-H, *J=3.7, 7= 1.7);
6.15 d (1H, 3'-H, °J = 3.7); 6.40 m, 6.80 s, and 6.88 s
(3H, Harom); 7.17-7.48 m and 7.59—7.80 m (6H, 1-H-
6-H); 7.90 d (1H, 5-H, °J = 1.6); 9.53 s (1H, NH).
Found, %: C 77.08; H 5.39; N 2.97. CyH,sNO,. Cal-
culated, %: C 77.16; H 5.54; N 3.10.

Isomer 9-eq. mp 285-286°C. 'H NMR spectrum, §,
ppm (J, Hz): 1.30 t and 3.98 q (5H, OEt); 2.50 m (2H,
8-H); 2.90 m (2H, 10-H); 3.30 m (1H, 9-H); 5.70 s
(1H, 12-H); 6.31 d.d (1H, 4'-H, *J=3.7, "J = 1.7);
6.15 d (1H, 3'-H, °J = 3.7); 6.40 m, 6.80 s, and 6.88 s
(3H, Hyom); 7.17-7.48 m and 7.59—7.80 m (6H, 1-H—
6-H); 7.90 d (1H, 5'-H, °J = 1.6); 9.62 s (1H, NH).
Found, %: C 76.92; H 5.45; N 3.16. C50H,sNO,. Cal-
culated, %: C 77.16; H 5.54; N 3.10.

2-Ethoxy-4-[9-(2-furyl)-11-o0x0-7,8,9,10,12-hexa-
hydrobenzo[a]acridin-12-yl]phenyl propanoate
(IVj). Yield 37%, mp 215-216°C. "H NMR spectrum,
o, ppm (J, Hz): 1.12 t, 1.30 t, and 3.78-4.00 m (10H,
OEt, OCOEY); 2.51 m (2H, 8-H); 2.92 m (2H, 10-H);
3.27 m and 3.48 m (1H, 9-H); 5.70 d.d and 6.30 d.d
(1H, 4-H, °J = 3.5, *J7=1.5); 5.86 s and 5.94 s (1H,
12-H); 6.18 d (1H, 3'-H, °J = 3.5); 6.40-6.72 m and
7.00 d 3H, Harom, *J = 7.9); 7.16-7.47 m and 7.58—
7.80 m (6H, 1-H-6-H); 7.93 d (IH, 5-H, °J = 1.5);
9.65 s and 9.75 s (1H, NH). Found, %: C 75.55;
H 5.61; N 2.56. C3;HyyNOs. Calculated, %: C 75.74;
H5.72, N 2.76.

9-(2-Furyl)-12-(4-propoxyphenyl)-7,8,9,10,11,12-
hexahydrobenzo|a]acridin-11-one (IVK). Yield 56%,
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mp 261-262°C. 'H NMR spectrum, §, ppm (J, Hz):
1.00 m, 1.71 m, and 3.80 m (7H, OPr); 2.50 m (2H,
8-H); 2.90 m (2H, 10-H); 3.33 m and 3.50 m (1H,
9-H); 5.79 s and 5.82 s (1H, 12-H); 5.85 d.d and
6.30 d.d (1H, 4-H,°J=3.4,J=1.4); 6.12 d (1H, 3"-H,
’J=3.4); 6.58 d and 7.06 d (4H, Harom, J = 7.3); 7.23—
7.40 m and 7.62-7.75 m (6H, 1-H—6-H); 7.92 d (1H,
5'-H, °J = 1.5); 9.39 s and 9.48 s (1H, NH). Found, %:
C 79.93; H 5.86; N 3.02. C30H,7;NOs. Calculated, %:
C 80.18; H6.01; N 3.12.

12-(4-Dimethylaminophenyl)-9-(2-furyl)-7,8,9,-
10,11,12-hexahydrobenzo|a]acridin-11-one (IVI).
Yield 54%, mp 313-314°C. '"H NMR spectrum, 3, ppm
(/, Hz): 2.50 m (2H, 8-H), 2.88 m (2H, 10-H), 3.29 s
(6H, Me), 3.33 m and 3.52 m (1H, 9-H), 5.68 s and
5.73 s (1H, 12-H), 5.91 d.d and 6.32 d.d (1H, 4'-H, *J =
3.5,%7=1.5), 621 d (1H, 3-H, °J = 3.5), 6.48 d and
6.96 d (4H, Hyom, J = 7.5), 7.28-7.45 m and 7.58—
7.75 m (6H, 1-H-6-H), 7.96 d (IH, 5'-H, *J = 1.5),
9.65 s and 9.72 s (1H, NH). Found, %: C 79.91;
H 554, N 6.32. C29H26N202. Calculated, %: C 8018,
H 5.99; N 6.45.

12-(4-Diethylaminophenyl)-9-(2-furyl)-7,8,9,10,-
11,12-hexahydrobenzo[a]acridin-11-one (IVm).
Yield 69%, mp 300-301°C. '"H NMR spectrum, 3, ppm
(/. Hz): 1.08 t and 3.22 q (10H, Et), 2.47 m (2H, 8-H),
2.85 m (2H, 10-H), 3.39 m and 3.50 m (1H, 9-H),
5.70 s and 5.76 s (1H, 12-H), 5.85 d.d and 6.30 d.d
(1H, 4-H, °J =34, *J=16), 6.14 d (1H, 3-H, °J =
3.4), 6.48 d and 6.96 d (4H, Hyrom, °J = 7.6), 7.20—
7.40 m and 7.60-7.71 m (6H, 1-H-6-H), 7.95 d (1H,
5'-H, >J = 1.6), 9.70 s and 9.80 s (1H, NH). Found, %:
C 8037, H 626, N 5.82. C3]H30N202. Calculated, %%o:
C 80.52; H 6.49; N 6.06.

9-(2-Furyl)-12-(3-pyridyl)-7,8,9,10,11,12-hexa-
hydrobenzo[a]acridin-11-one (IVn). Yield 58%,
mp 312-313°C. 'H NMR spectrum, §, ppm (J, Hz):
2.59 m (2H, 8-H); 2.95 m (2H, 10-H); 3.38 m and
3.56 m (1H, 9-H); 5.82 s and 5.89 s (1H, 12-H);
5.85 d.d and 6.39 d.d (1H, 4-H, °J = 3.6, *J = 1.4);
6.19 d (1H, 3-H, °J = 3.6); 7.12 d, 7.55 s, 8.20 d, and
8.50 d (4H, CsHyN, °J = 7.7); 7.28-7.48 m and 7.68—
7.81 m (6H, 1-H-6-H); 7.94 d (1H, 5-H, °J = 1.4);
9.89 s and 9.96 s (1H, NH). Found, %: C 79.41;
H 504, N 6.97. C26H20N202. Calculated, %: C 7959,
H5.10; N 7.14.

9-(2-Furyl)-12-(4-pyridyl)-7,8,9,10,11,12-hexa-
hydrobenzo[a]acridin-11-one (IVo). Yield 38%,
mp 289-290°C. 'H NMR spectrum, 8, ppm (J, Hz):

2.52 m (2H, 8-H), 2.96 m (2H, 10-H), 3.33 m and
3.49 m (1H, 9-H), 5.80 s and 5.87 s (1H, 12-H),
5.90 d.d and 6.33 d.d (1H, 4-H, *J = 3.5, *J = 1.5),
6.20 d (1H, 3-H, °J = 3.6), 7.00-8.50 m (11H, 1-H—
6-H, 5'-H, CsHyN), 9.50 s and 9.60 s (1H, NH). Found,
%: C 7936, H 493, N 7.01. C26H20N202. Calculated,
%: C 79.59; H5.10; N 7.14.

9,12-Di(2-furyl)-7,8,9,10,11,12-hexahydrobenzo-
[a]acridin-11-one (IVp). Yield 27%, mp 299-300°C.
'H NMR spectrum, 8, ppm (J, Hz): 2.49 m (2H, 8-H),
2.99 m (2H, 10-H), 3.29 m and 3.50 m (1H, 9-H),
5.61 s and 5.70 s (1H, 12-H), 5.85-6.32 m (4H, 3'-H,
4'-H, furyl), 7.00-7.75 m (7H, 1-H-6-H, C,H;0),
8.03 d (1H, 5'-H, *J=1.7), 9.58 s and 9.67 s (1H, NH).
Found, %: C 78.61; H 5.05; N 3.42. C,sH;oNO;. Cal-
culated, %: C 78.74; H 4.99; N 3.67.

This study was performed under financial support
by the Byelorussian—Russian Foundation for Basic
Research (project no. Kh04P-017).
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